NEURAL INFORMATION PROCESSING SYSTEMS **NeurIPS'22 Competition Track Winner Presentation**

MyoChallenge: Die Rotation

Speaker: Yiran Geng, Boshi An

Yiran Geng*

Boshi An* Yifan Zhong* Jiaming Ji Yuanpei Chen Hao Dong

Yaodong Yang

Contents

- Introduction
- Methods
 - Reward Shaping
 - Curriculum Learning
 - Multi-target Training
- Limitation
- Future works

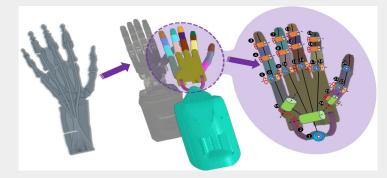
Contents

• Introduction

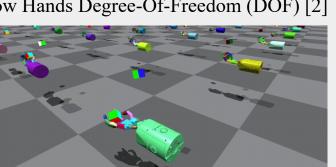
• Methods

- Reward Shaping
- Curriculum Learning
- Multi-target Training
- Limitation
- Future works

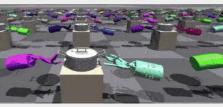
Our previous attempts on Dexterous Hands



Shadow Hands Degree-Of-Freedom (DOF) [2]



Die Rotation [1]



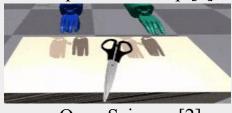
Lift Pot [2]

Hand Over [2]

Swing Cup [2]

Open Door [2]

Open Bottle Cap [2]

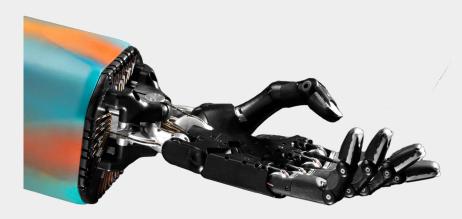


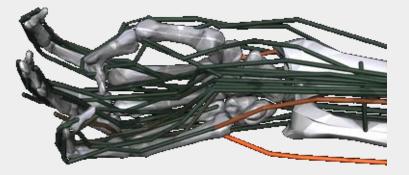
Open Scissors [2]

[1] Makoviychuk, Viktor, et al. "Isaac gym: High performance gpu-based physics simulation for robot learning." arXiv preprint arXiv:2108.10470 (2021). Δ [2] Chen, Yuanpei, et al. "Towards human-level bimanual dexterous manipulation with reinforcement learning." arXiv preprint arXiv:2206.08686 (2022).

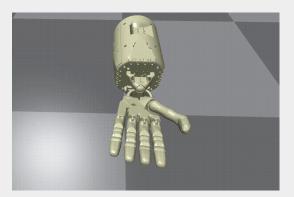
Difficulties with MyoHand

We attribute the difficulties to the difference in drive mode.

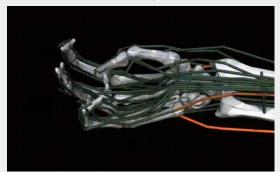




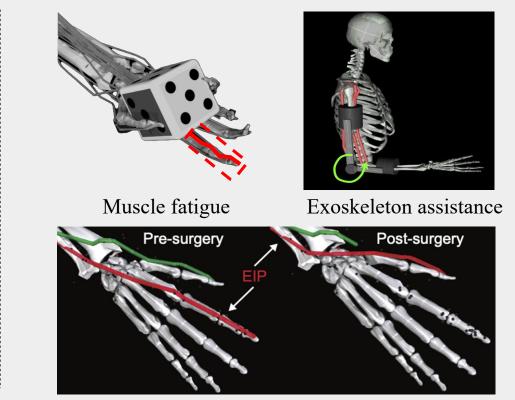
Difficulties with MyoHand

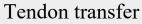


Move a joint



Apply a force to a muscle



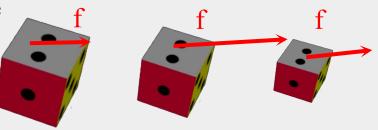


Difficulties with MyoHand

- Random Initialization
- Random Goal

Task	Goal	Environment initialization	Evaluation
Die Phase1	$Goal_{pos} \sim (010,.010)_{xyz} \ Goal_{rot} \sim (-1.57,1.57)_{xyz}$	$init_{hand}: palm \ up$ $init_{die}: over \ palm$	$score = ig(\sum_{t=T-5}^T success[t]ig) > 0$
Die Phase2	$Goal_{pos} \sim (020,.020)_{xyz} \ Goal_{rot} \sim (-3.14,3.14)_{xyz}$	$init_{hand}: palm \ up + noise \ init_{die}: over \ palm + noise$	$effort = \sum_{t=0}^{T} act_{mag}[t]/T$

- Radom physical properties of the die
 - Random die size
 - Random die friction



Contents

- Introduction
- Methods
 - Reward Shaping
 - Curriculum Learning
 - Multi-target Training
- Limitation
- Future works

Our Method

Reinforcement Learning (NPG/PPO) Curriculum Reward

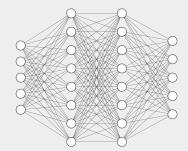
Curriculun Learning

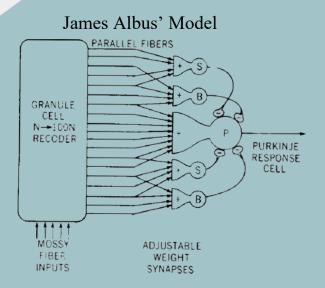
Shaping

Multi-target Training

Reinforcement Learning Framework

Simplest models, but excellent performance. Policy network is a MLP with hidden size 64. Trained with natural policy gradient, on a 32-core machine.





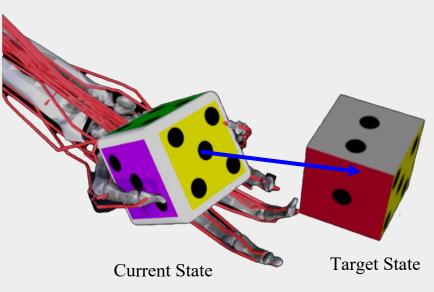
Human Cerebellum consists of a structure similar to MLP.

Reward Shaping

The most powerful tool for us to improve performance is reward shaping

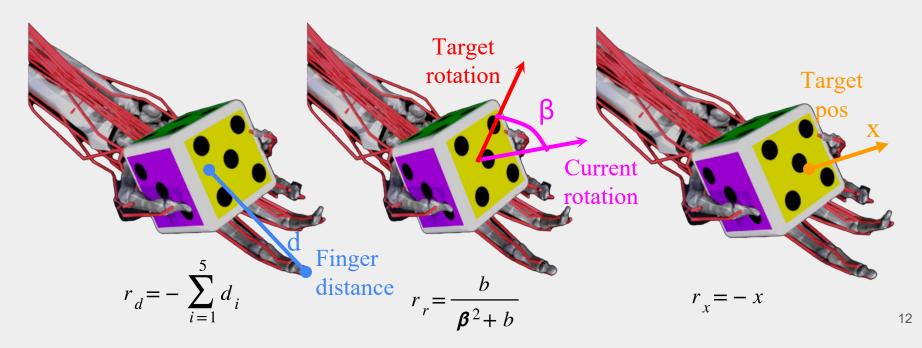
Criterias should be met:

- 1. Distance within a range
- 2. Rotational error within a range
- 3. \geq 5 successes in a trial



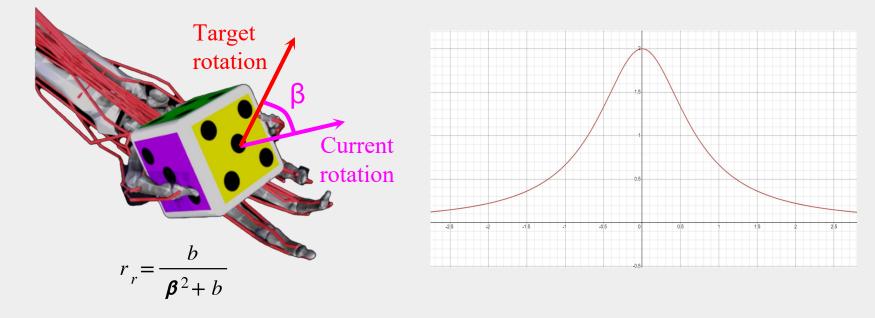
Reward Shaping

The most powerful tool for us to improve performance is reward shaping



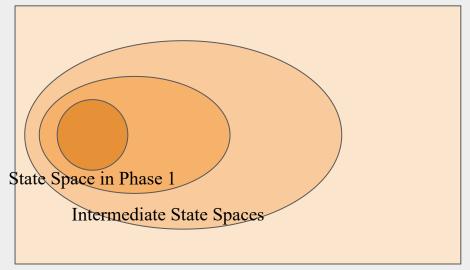
Reward Shaping

The most difficult criteria to met is the rotational error limit.

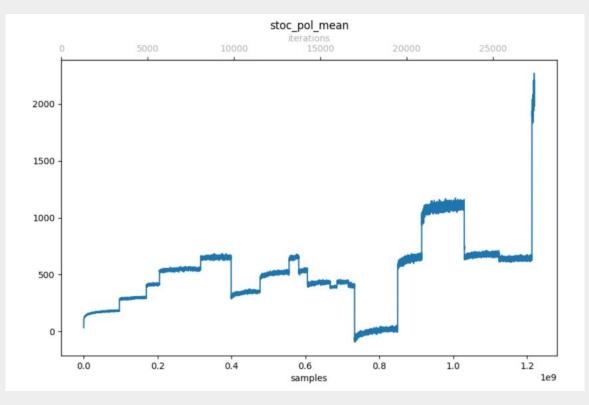


Our discoveries:

- 1. Generally speaking, the difficulty of a task is positively related to the size of state (or observation) space.
- 2. Constrain to less randomization and shorter episode length result in faster training but lower performance in original task.
- 3. When the learning rate of value function is much greater than policy network, adjusting reward function in the training process won't cause the policy to fail.



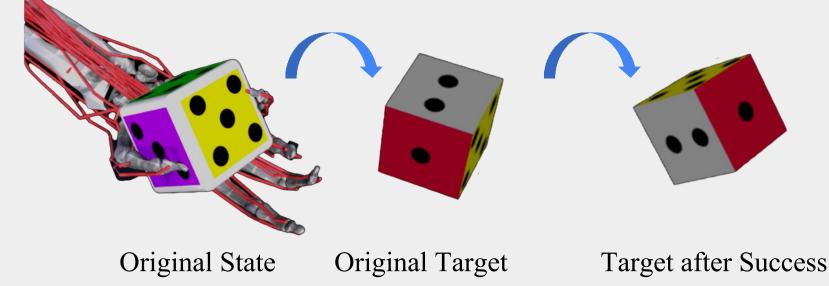
State Space in Phase 2



It is still challenging for a single policy to handle rotations greater than 90 degrees, even with our curriculum learning technique. The reason is that reorientation within 90 degrees can be done with a single move, while a 180-degree rotation needs at least two moves

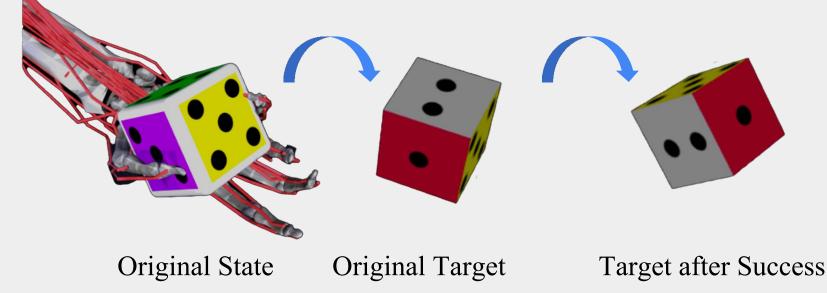
Multi-target Training

One way to encourage the agent to learn to manipulate the object with multiple moves is to adopt multi-target training: the target of reorientation will be updated after each success.



Multi-target Training

Even if the agent can only handle reorientation within 90 degrees, by reaching consecutive targets, the agent can perform an overall rotation over 90 degrees.



Multi-target Training

However, our agent did not perform as expected during the multi-target training.

In phase 2, we have to focus on reaching a high success rate for rotations within 90 degrees (same as phase 1), and give up on large rotations.

Contents

- Introduction
- Methods
 - Reward Shaping
 - Curriculum Learning
 - Multi-target Training
- Limitation
- Future works

Limitations

Our method failed to generate policies that is able to finish large rotations by multiple movements.

Contents

- Introduction
- Methods
 - Reward Shaping
 - Curriculum Learning
 - Multi-target Training
- Limitation
- Future works

Future Works

Our method failed to generate policies that is able to finish large rotations by multiple movements, which is a mismatched phenomenon comparing to animal behaviors.

Our policy only capable of proposing single movement in different conditions

Decerebrated cat exhibit multiple locomotion modes in different conditions

Future Works

- Automatically merging different policy networks for different rotation ranges.
- Increasing the number of parallel environments.
- More improvements are yet to be studied!

Thank you!

Github Repo: <u>https://github.com/PKU-MARL/MyoChallenge</u> Email: <u>boshi_an@stu.pku.edu.cn</u> and <u>gyr@stu.pku.edu.cn</u> Websites: Yiran Geng: <u>https://gengyiran.github.io/</u> Yaodong Yang: <u>https://www.yangyaodong.com/</u>