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Learning to manipulate 3D objects in an interactive environment has been a 
challenging problem in Reinforcement Learning (RL). In particular, it is hard to 
train a policy that can generalize over objects with different semantic 
categories, diverse shape geometry and versatile functionality. Recently, the 
technique of visual affordance has shown great prospects in providing object-
centric information priors with effective actionable semantics. As such, an 
effective policy can be trained to open a door by knowing how to exert force 
on the handle. However, to learn the affordance, it often requires human-
defined action primitives, which limits the range of applicable tasks. In this 
study, we take advantage of visual affordance by using the contact information 
generated during the RL training process to predict contact maps of interest. 
Such contact prediction process then leads to an end-to-end affordance 
learning framework that can generalize over different types of manipulation 
tasks. Surprisingly, the effectiveness of such framework holds even under the 
multistage and the multi-agent scenarios. We tested our method on eight 
types of manipulation tasks. Results showed that our methods outperform 
baseline algorithms, including visual-based affordance methods and RL 
methods, by a large margin on the success rate. 

Introduction

Our pipeline contains two main modules: Manipulation Module (MA Module) generating 
interaction trajectories and Visual Affordance Module (VA Module) learning to generate per-
point affordance map M based on the real-time point cloud. The Contact Predictor (CP), 
shared across two modules, serves as a bridge between them: 1) MA Module uses the 
affordance map (indicated by the blue arrow) and Max-affordance Point Observation (MPO) 
(indicated by the upper red arrow) predicted by the CP as a part of the input observation. A 
Max-affordance Point Reward (MPR) feedback (indicated by the lower red arrow) is also 
incorporated in training MA Module; 2) MA Module maintains a Contact Buffer (CB) by 
collecting collision information and generating Dynamic Ground Truth (DGT) (indicated by 
the orange arrow), where VA Module uses the DGT as the target for training CP. 

Materials and methods

Results

From tables in Results section, the results of Where2act and RL show the 
visual affordance can improve the RL performance. However, our 
method achieves a more significant improvement over baselines in both 
training and testing sets. In dual-arm-push, our method outperforms 
both RL and MARL methods. From all tables, we see the MPO, MPR and 
E2E components play important roles in our method except that E2E on 
dual-arm-push. The potential reason is that the predicted max 
affordance point on the object is changing during object movement, 
which may influence the RL training. This may be something worth 
looking into in the future.
Figure in Results section shows the change in affordance maps during 
endto-end training and examples of final affordance maps. We can see 
that as the training proceeds, the affordance map gradually 
concentrates. 

Discussion

To the best of our knowledge, this the first work that proposes an end-to-end 
affordance RL framework for robotic manipulation tasks. In RL training, affordance 
can improve the policy learning by providing additional observation and reward 
signals. Our framework automatically learns affordance semantics through RL 
training without human demonstration or other artificial designs dedicated to data 
collection. The simplicity of our method, together with the superior performance 
over strong baselines and the wide range of applicable tasks, has demonstrated 
the effectiveness of learning from contact information. We believe our work could 
potentially open a new way for future RL-based manipulation developments
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• Average Success Rate (ASR): The ASR is the average of the algorithm’s success rate on all objects in the 
training / testing dataset. 
• Master Percentage (MP): The master percentage is the percentage of objects which the algorithm can 
success with a probability greater than or equal to 50%.


